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Abstract

Morphological processes in Semitic languages
deliver space-delimited words which intro-
duce multiple, distinct, syntactic units into the
structure of the input sentence. These words
are in turn highly ambiguous, breaking the
assumption underlying most parsers that the
yield of a tree for a given sentence is known in
advance. Here we propose a single joint model
for performing both morphological segmenta-
tion and syntactic disambiguation which by-
passes the associated circularity. Using a tree-
bank grammar, a data-driven lexicon, and a
linguistically motivated unknown-tokens han-
dling technique our model outperforms previ-
ous pipelined, integrated or factorized systems
for Hebrew morphological and syntactic pro-
cessing, yielding an error reduction of 12%
over the best published results so far.

1 Introduction

Current state-of-the-art broad-coverage parsers as-
sume a direct correspondence between the lexical
items ingrained in the proposed syntactic analyses
(the yields of syntactic parse-trees) and the space-
delimited tokens (henceforth, ‘tokens’) that consti-
tute the unanalyzed surface forms (utterances). In
Semitic languages the situation is very different.

In Modern Hebrew (Hebrew), a Semitic language
with very rich morphology, particles marking con-
junctions, prepositions, complementizers and rela-
tivizers are bound elements prefixed to the word
(Glinert, 1989). The Hebrew token ‘bcl’1, for ex-
ample, stands for the complete prepositional phrase

1We adopt here the transliteration of (Sima’an et al., 2001).

“in the shadow”. This token may further embed
into a larger utterance, e.g., ‘bcl hneim’ (literally
“in-the-shadow the-pleasant”, meaning roughly “in
the pleasant shadow”) in which the dominated Noun
is modified by a proceeding space-delimited adjec-
tive. It should be clear from the onset that the parti-
cle b (“in”) in ‘bcl’ may then attach higher than the
bare noun cl (“shadow”). This leads to word- and
constituent-boundaries discrepancy, which breaks
the assumptions underlying current state-of-the-art
statistical parsers.

One way to approach this discrepancy is to as-
sume a preceding phase of morphological segmen-
tation for extracting the different lexical items that
exist at the token level (as is done, to the best of
our knowledge, in all parsing related work on Arabic
and its dialects (Chiang et al., 2006)). The input for
the segmentation task is however highly ambiguous
for Semitic languages, and surface forms (tokens)
may admit multiple possible analyses as in (Bar-
Haim et al., 2007; Adler and Elhadad, 2006). The
aforementioned surface form bcl, for example, may
also stand for the lexical item “onion”, a Noun. The
implication of this ambiguity for a parser is that the
yield of syntactic trees no longer consists of space-
delimited tokens, and the expected number of leaves
in the syntactic analysis in not known in advance.

Tsarfaty (2006) argues that for Semitic languages
determining the correct morphological segmentation
is dependent on syntactic context and shows that in-
creasing information sharing between the morpho-
logical and the syntactic components leads to im-
proved performance on the joint task. Cohen and
Smith (2007) followed up on these results and pro-



posed a system for joint inference of morphological
and syntactic structures using factored models each
designed and trained on its own.

Here we push the single-framework conjecture
across the board and present a single model that
performs morphological segmentation and syntac-
tic disambiguation in a fully generative framework.
We claim that no particular morphological segmen-
tation is a-priory more likely for surface forms be-
fore exploring the compositional nature of syntac-
tic structures, including manifestations of various
long-distance dependencies. Morphological seg-
mentation decisions in our model are delegated to a
lexeme-based PCFG and we show that using a sim-
ple treebank grammar, a data-driven lexicon, and
a linguistically motivated unknown-tokens handling
our model outperforms (Tsarfaty, 2006) and (Co-
hen and Smith, 2007) on the joint task and achieves
state-of-the-art results on a par with current respec-
tive standalone models.2

2 Modern Hebrew Structure

Segmental morphology Hebrew consists of
seven particles m(“from”) f (“when”/“who”/“that”)
h(“the”) w(“and”) k(“like”) l(“to”) and b(“in”).
which may never appear in isolation and must
always attach as prefixes to the following open-class
category item we refer to as stem. Several such
particles may be prefixed onto a single stem, in
which case the affixation is subject to strict linear
precedence constraints. Co-occurrences among the
particles themselves are subject to further syntactic
and lexical constraints relative to the stem.

While the linear precedence of segmental mor-
phemes within a token is subject to constraints, the
dominance relations among their mother and sister
constituents is rather free. The relativizer f(“that”)
for example, may attach to an arbitrarily long rela-
tive clause that goes beyond token boundaries. The
attachment in such cases encompasses a long dis-
tance dependency that cannot be captured by Marko-
vian processes that are typically used for morpho-
logical disambiguation. The same argument holds
for resolving PP attachment of a prefixed preposition
or marking conjunction of elements of any kind.

A less canonical representation of segmental mor-
2Standalone parsing models assume a segmentation Oracle.

phology is triggered by a morpho-phonological pro-
cess of omitting the definite article h when occur-
ring after the particles b or l. This process triggers
ambiguity as for the definiteness status of Nouns
following these particles.We refer to such cases
in which the concatenation of elements does not
strictly correspond to the original surface form as
super-segmental morphology. An additional case of
super-segmental morphology is the case of Pronom-
inal Clitics. Inflectional features marking pronom-
inal elements may be attached to different kinds of
categories marking their pronominal complements.
The additional morphological material in such cases
appears after the stem and realizes the extended
meaning. The current work treats both segmental
and super-segmental phenomena, yet we note that
there may be more adequate ways to treat super-
segmental phenomena assuming Word-Based mor-
phology as we explore in (Tsarfaty and Goldberg,
2008).

Lexical and Morphological Ambiguity The rich
morphological processes for deriving Hebrew stems
give rise to a high degree of ambiguity for Hebrew
space-delimited tokens. The form fmnh, for exam-
ple, can be understood as the verb “lubricated”, the
possessed noun “her oil”, the adjective “fat” or the
verb “got fat”. Furthermore, the systematic way in
which particles are prefixed to one another and onto
an open-class category gives rise to a distinct sort
of morphological ambiguity: space-delimited tokens
may be ambiguous between several different seg-
mentation possibilities. The same form fmnh can be
segmented as f-mnh, f (“that”) functioning as a rele-
tivizer with the form mnh. The form mnh itself can
be read as at least three different verbs (“counted”,
“appointed”, “was appointed”), a noun (“a portion”),
and a possessed noun (“her kind”).

Such ambiguities cause discrepancies between
token boundaries (indexed as white spaces) and
constituent boundaries (imposed by syntactic cate-
gories) with respect to a surface form. Such discrep-
ancies can be aligned via an intermediate level of
PoS tags. PoS tags impose a unique morphological
segmentation on surface tokens and present a unique
valid yield for syntactic trees. The correct ambigu-
ity resolution of the syntactic level therefore helps to
resolve the morphological one, and vice versa.



3 Previous Work on Hebrew Processing

Morphological analyzers for Hebrew that analyze a
surface form in isolation have been proposed by Se-
gal (2000), Yona and Wintner (2005), and recently
by the knowledge center for processing Hebrew (Itai
et al., 2006). Such analyzers propose multiple seg-
mentation possibilities and their corresponding anal-
yses for a token in isolation but have no means to
determine the most likely ones. Morphological dis-
ambiguators that consider a token in context (an ut-
terance) and propose the most likely morphologi-
cal analysis of an utterance (including segmentation)
were presented by Bar-Haim et al. (2005), Adler
and Elhadad (2006), Shacham and Wintner (2007),
and achieved good results (the best segmentation re-
sult so far is around 98%).

The development of the very first Hebrew Tree-
bank (Sima’an et al., 2001) called for the exploration
of general statistical parsing methods, but the appli-
cation was at first limited. Sima’an et al. (2001) pre-
sented parsing results for a DOP tree-gram model
using a small data set (500 sentences) and semi-
automatic morphological disambiguation. Tsarfaty
(2006) was the first to demonstrate that fully auto-
matic Hebrew parsing is feasible using the newly
available 5000 sentences treebank. Tsarfaty and
Sima’an (2007) have reported state-of-the-art results
on Hebrew unlexicalized parsing (74.41%) albeit as-
suming oracle morphological segmentation.

The joint morphological and syntactic hypothesis
was first discussed in (Tsarfaty, 2006; Tsarfaty and
Sima’an, 2004) and empirically explored in (Tsar-
faty, 2006). Tsarfaty (2006) used a morphological
analyzer (Segal, 2000), a PoS tagger (Bar-Haim et
al., 2005), and a general purpose parser (Schmid,
2000) in an integrated framework in which morpho-
logical and syntactic components interact to share
information, leading to improved performance on
the joint task. Cohen and Smith (2007) later on
based a system for joint inference on factored, inde-
pendent, morphological and syntactic components
of which scores are combined to cater for the joint
inference task. Both (Tsarfaty, 2006; Cohen and
Smith, 2007) have shown that a single integrated
framework outperforms a completely streamlined
implementation, yet neither has shown a single gen-
erative model which handles both tasks.

4 Model Preliminaries

4.1 The Status Space-Delimited Tokens

A Hebrew surface token may have several readings,
each of which corresponding to a sequence of seg-
ments and their corresponding PoS tags. We refer
to different readings as different analyses whereby
the segments are deterministic given the sequence of
PoS tags. We refer to a segment and its assigned PoS
tag as a lexeme, and so analyses are in fact sequences
of lexemes. For brevity we omit the segments from
the analysis, and so analysis of the form “fmnh” as
f/REL mnh/VB is represented simply as REL VB.

Such tag sequences are often treated as “complex
tags” (e.g. REL+VB) (cf. (Bar-Haim et al., 2007;
Habash and Rambow, 2005)) and probabilities are
assigned to different analyses in accordance with
the likelihood of their tags (e.g., “fmnh is 30%
likely to be tagged NN and 70% likely to be tagged
REL+VB”). Here we do not submit to this view.
When a token fmnh is to be interpreted as the lex-
eme sequence f /REL mnh/VB, the analysis intro-
duces two distinct entities, the relativizer f (“that”)
and the verb mnh (“counted”), and not as the com-
plex entity “that counted”. When the same token
is to be interpreted as a single lexeme fmnh, it may
function as a single adjective “fat”. There is no re-
lation between these two interpretations other then
the fact that their surface forms coincide, and we ar-
gue that the only reason to prefer one analysis over
the other is compositional. A possible probabilistic
model for assigning probabilities to complex analy-
ses of a surface form may be

P (REL,VB|fmnh, context) =

P (REL|f)P (VB|mnh,REL)P (REL,VB| context)

and indeed recent sequential disambiguation models
for Hebrew (Adler and Elhadad, 2006) and Arabic
(Smith et al., 2005) present similar models.

We suggest that in unlexicalized PCFGs the syn-
tactic context may be explicitly modeled in the
derivation probabilities. Hence, we take the prob-
ability of the event fmnh analyzed as REL VB to be

P (REL→ f|REL) × P (VB→ mnh|VB)

This means that we generate f and mnh indepen-
dently depending on their corresponding PoS tags,



and the context (as well as the syntactic relation be-
tween the two) is modeled via the derivation result-
ing in a sequence REL VB spanning the form fmnh.

4.2 Lattice Representation

We represent all morphological analyses of a given
utterance using a lattice structure. Each lattice arc
corresponds to a segment and its corresponding PoS
tag, and a path through the lattice corresponds to
a specific morphological segmentation of the utter-
ance. This is by now a fairly standard representa-
tion for multiple morphological segmentation of He-
brew utterances (Adler, 2001; Bar-Haim et al., 2005;
Smith et al., 2005; Cohen and Smith, 2007; Adler,
2007). Figure 1 depicts the lattice for a 2-words
sentence bclm hneim. We use double-circles to in-
dicate the space-delimited token boundaries. Note
that in our construction arcs can never cross token
boundaries. Every token is independent of the oth-
ers, and the sentence lattice is in fact a concatena-
tion of smaller lattices, one for each token. Fur-
thermore, some of the arcs represent lexemes not
present in the input tokens (e.g. h/DT, fl/POS), how-
ever these are parts of valid analyses of the token (cf.
super-segmental morphology section 2). Segments
with the same surface form but different PoS tags
are treated as different lexemes, and are represented
as separate arcs (e.g. the two arcs labeled neim from
node 6 to 7).

0
5

bclm/NNP

1
b/IN

2

bcl/NN

7

hneim/VB

6

h/DT

clm/NN

clm/VB

cl/NN
3

h/DT

4
fl/POS

clm/NN

hm/PRP

neim/VB

neim/JJ

Figure 1: The Lattice for the Hebrew Phrase bclm hneim

A similar structure is used in speech recognition.
There, a lattice is used to represent the possible sen-
tences resulting from an interpretation of an acoustic
model. In speech recognition the arcs of the lattice
are typically weighted in order to indicate the prob-
ability of specific transitions. Given that weights on
all outgoing arcs sum up to one, weights induce a
probability distribution on the lattice paths. In se-
quential tagging models such as (Adler and Elhadad,
2006; Bar-Haim et al., 2007; Smith et al., 2005)
weights are assigned according to a language model

based on linear context. In our model, however, all
lattice paths are taken to be a-priori equally likely.

5 A Generative PCFG Model

The input for the joint task is a sequence W =
w1, . . . , wn of space-delimited tokens. Each token
may admit multiple analyses, each of which a se-
quence of one or more lexemes (we use li to denote
a lexeme) belonging a presupposed Hebrew lexicon
LEX . The entries in such a lexicon may be thought
of as meaningful surface segments paired up with
their PoS tags li = 〈si, pi〉, but note that a surface
segment s need not be a space-delimited token.

The Input The set of analyses for a token is thus
represented as a lattice in which every arc corre-
sponds to a specific lexeme l, as shown in Figure
1. A morphological analyzer M : W → L is a
function mapping sentences in Hebrew (W ∈ W)
to their corresponding lattices (M(W ) = L ∈ L).
We define the lattice L to be the concatenation of the
lattices Li corresponding to the input words wi (s.t.
M(wi) = Li). Each connected path 〈l1 . . . lk〉 ∈
L corresponds to one morphological segmentation
possibility of W .

The Parser Given a sequence of input tokens
W = w1 . . . wn and a morphological analyzer, we
look for the most probable parse tree π s.t.

π̂ = arg max
π

P (π|W,M)

Since the lattice L for a given sentence W is deter-
mined by the morphological analyzer M we have

π̂ = arg max
π

P (π|W,M,L)

Hence, our parser searches for a parse tree π over
lexemes 〈l1 . . . lk〉 s.t. li = 〈si, pi〉 ∈ LEX ,
〈l1 . . . lk〉 ∈ L and M(W ) = L. So we remain with

π̂ = arg max
π

P (π|L)

which is precisely the formula corresponding to the
so-called lattice parsing familiar from speech recog-
nition. Every parse π selects a specific morphologi-
cal segmentation 〈l1...lk〉 (a path through the lattice).
This is akin to PoS tags sequences induced by dif-
ferent parses in the setup familiar from English and
explored in e.g. (Charniak et al., 1996).



Our use of an unweighted lattice reflects our be-
lief that all the segmentations of the given input sen-
tence are a-priori equally likely; the only reason to
prefer one segmentation over the another is due to
the overall syntactic context which is modeled via
the PCFG derivations. A compatible view is pre-
sented by Charniak et al. (1996) who consider the
kind of probabilities a generative parser should get
from a PoS tagger, and concludes that these should
be P (w|t) “and nothing fancier”.3 In our setting,
therefore, the Lattice is not used to induce a proba-
bility distribution on a linear context, but rather, it is
used as a common-denominator of state-indexation
of all segmentations possibilities of a surface form.
This is a unique object for which we are able to de-
fine a proper probability model. Thus our proposed
model is a proper model assigning probability mass
to all 〈π,L〉 pairs, where π is a parse tree and L is
the one and only lattice that a sequence of characters
(and spaces) W over our alpha-beth gives rise to.

∑

π,L

P (π,L) = 1; L uniquely index W

The Grammar Our parser looks for the most
likely tree spanning a single path through the lat-
tice of which the yield is a sequence of lexemes.
This is done using a simple PCFG which is lexeme-
based. This means that the rules in our grammar
are of two kinds: (a) syntactic rules relating non-
terminals to a sequence of non-terminals and/or PoS
tags, and (b) lexical rules relating PoS tags to lattice
arcs (lexemes). The possible analyses of a surface
token pose constraints on the analyses of specific
segments. In order to pass these constraints onto the
parser, the lexical rules in the grammar are of the
form pi → 〈si, pi〉

Parameter Estimation The grammar probabili-
ties are estimated from the corpus using simple rela-
tive frequency estimates. Lexical rules are estimated
in a similar manner. We smooth Prf (p → 〈s, p〉) for
rare and OOV segments (s ∈ l, l ∈ L, s unseen) us-
ing a “per-tag” probability distribution over rare seg-
ments which we estimate using relative frequency
estimates for once-occurring segments.

3An English sentence with ambiguous PoS assignment can
be trivially represented as a lattice similar to our own, where
every pair of consecutive nodes correspond to a word, and every
possible PoS assignment for this word is a connecting arc.

Handling Unknown tokens When handling un-
known tokens in a language such as Hebrew various
important aspects have to be borne in mind. Firstly,
Hebrew unknown tokens are doubly unknown: each
unknown token may correspond to several segmen-
tation possibilities, and each segment in such se-
quences may be able to admit multiple PoS tags.
Secondly, some segments in a proposed segment se-
quence may in fact be seen lexical events, i.e., for
some p tag Prf (p → 〈s, p〉) > 0, while other seg-
ments have never been observed as a lexical event
before. The latter arcs correspond to OOV words
in English. Finally, the assignments of PoS tags to
OOV segments is subject to language specific con-
straints relative to the token it was originated from.

Our smoothing procedure takes into account all
the aforementioned aspects and works as follows.
We first make use of our morphological analyzer to
find all segmentation possibilities by chopping off
all prefix sequence possibilities (including the empty
prefix) and construct a lattice off of them. The re-
maining arcs are marked OOV. At this stage the lat-
tice path corresponds to segments only, with no PoS
assigned to them. In turn we use two sorts of heuris-
tics, orthogonal to one another, to prune segmenta-
tion possibilities based on lexical and grammatical
constraints. We simulate lexical constraints by using
an external lexical resource against which we verify
whether OOV segments are in fact valid Hebrew lex-
emes. This heuristics is used to prune all segmenta-
tion possibilities involving “lexically improper” seg-
ments. For the remaining arcs, if the segment is in
fact a known lexeme it is tagged as usual, but for the
OOV arcs which are valid Hebrew entries lacking
tags assignment, we assign all possible tags and then
simulate a grammatical constraint. Here, all token-
internal collocations of tags unseen in our training
data are pruned away. From now on all lattice arcs
are tagged segments and the assignment of probabil-
ity P (p → 〈s, p〉) to lattice arcs proceeds as usual.4

A rather pathological case is when our lexical
heuristics prune away all segmentation possibilities
and we remain with an empty lattice. In such cases
we use the non-pruned lattice including all (possibly
ungrammatical) segmentation, and let the statistics
(including OOV) decide. We empirically control for

4Our heuristics may slightly alter
P

π,L
P (π, L) ≈ 1



the effect of our heuristics to make sure our pruning
does not undermine the objectives of our joint task.

6 Experimental Setup

Previous work on morphological and syntactic dis-
ambiguation in Hebrew used different sets of data,
different splits, differing annotation schemes, and
different evaluation measures. Our experimental
setup therefore is designed to serve two goals. Our
primary goal is to exploit the resources that are most
appropriate for the task at hand, and our secondary
goal is to allow for comparison of our models’ per-
formance against previously reported results. When
a comparison against previous results requires addi-
tional pre-processing, we state it explicitly to allow
for the reader to replicate the reported results.

Data We use the Hebrew Treebank, (Sima’an
et al., 2001), provided by the knowledge center
for processing Hebrew, in which sentences from
the daily newspaper “Ha’aretz” are morphologically
segmented and syntactically annotated. The tree-
bank has two versions, v1.0 and v2.0, containing
5001 and 6501 sentences respectively. We use v1.0
mainly because previous studies on joint inference
reported results w.r.t. v1.0 only.5 We expect that
using the same setup on v2.0 will allow a cross-
treebank comparison.6 We used the first 500 sen-
tences as our dev set and the rest 4500 for training
and report our main results on this split. To facili-
tate the comparison of our results to those reported
by (Cohen and Smith, 2007) we use their data set in
which 177 empty and “malformed”7 were removed.
The first 3770 trees of the resulting set then were
used for training, and the last 418 are used testing.
(we ignored the 419 trees in their development set.)

Morphological Analyzer Ideally, we would use
an of-the-shelf morphological analyzer for mapping
each input token to its possible analyses. Such re-
sources exist for Hebrew (Itai et al., 2006), but un-
fortunately use a tagging scheme which is incom-

5The comparison to performance on version 2.0 is meaning-
less not only because of the change in size, but also conceptual
changes in the annotation scheme

6Unfortunatley running our setup on the v2.0 data set is cur-
rently not possible due to missing tokens-morphemes alignment
in the v2.0 treebank.

7We thank Shay Cohen for providing us with their data set
and evaluation Software.

patible with the one of the Hebrew Treebank.8 For
this reason, we use a data-driven morphological an-
alyzer derived from the training data similar to (Co-
hen and Smith, 2007). We construct a mapping from
all the space-delimited tokens seen in the training
sentences to their corresponding analyses.

Lexicon and OOV Handling Our data-driven
morphological-analyzer proposes analyses for un-
known tokens as described in Section 5. We use the
HSPELL9 (Har’el and Kenigsberg, 2004) wordlist
as a lexeme-based lexicon for pruning segmenta-
tions involving invalid segments. Models that em-
ploy this strategy are denoted hsp. To control for
the effect of the HSPELL-based pruning, we also ex-
perimented with a morphological analyzer that does
not perform this pruning. For these models we limit
the options provided for OOV words by not consid-
ering the entire token as a valid segmentation in case
at least some prefix segmentation exists. This ana-
lyzer setting is similar to that of (Cohen and Smith,
2007), and models using it are denoted nohsp,

Parser and Grammar We used BitPar (Schmid,
2004), an efficient general purpose parser,10 together
with various treebank grammars to parse the in-
put sentences and propose compatible morpholog-
ical segmentation and syntactic analysis.

We experimented with increasingly rich gram-
mars read off of the treebank. Our first model is
GTplain, a PCFG learned from the treebank after
removing all functional features from the syntactic
categories. In our second model GTvpi we also
distinguished finite and non-finite verbs and VPs as

8Mapping between the two schemes involves non-
deterministic many-to-many mappings, and in some cases re-
quire a change in the syntactic trees.

9An open-source Hebrew spell-checker.
10Lattice parsing can be performed by special initialization

of the chart in a CKY parser (Chappelier et al., 1999). We
currently simulate this by crafting a WCFG and feeding it to
BitPar. Given a PCFG grammar G and a lattice L with nodes
n1 . . . nk , we construct the weighted grammar GL as follows:
for every arc (lexeme) l ∈ L from node ni to node nj , we add
to GL the rule [l → tni

, tni+1
, . . . , tnj−1

] with a probability of
1 (this indicates the lexeme l spans from node ni to node nj).
GL is then used to parse the string tn1

. . . tnk−1
, where tni

is
a terminal corresponding to the lattice span between node ni

and ni+1. Removing the leaves from the resulting tree yields a
parse for L under G, with the desired probabilities. We use a
patched version of BitPar allowing for direct input of probabili-
ties instead of counts. We thank Felix Hageloh (Hageloh, 2006)
for providing us with this version.



proposed in (Tsarfaty, 2006). In our third model
GTppp we also add the distinction between gen-
eral PPs and possessive PPs following Goldberg and
Elhadad (2007). In our forth model GTnph we
add the definiteness status of constituents follow-
ing Tsarfaty and Sima’an (2007). Finally, model
GTv = 2 includes parent annotation on top of the
various state-splits, as is done also in (Tsarfaty and
Sima’an, 2007; Cohen and Smith, 2007). For all
grammars, we use fine-grained PoS tags indicating
various morphological features annotated therein.

Evaluation We use 8 different measures to eval-
uate the performance of our system on the joint dis-
ambiguation task. To evaluate the performance on
the segmentation task, we report SEG, the stan-
dard harmonic means for segmentation Precision
and Recall F1 (as defined in Bar-Haim et al. (2005);
Tsarfaty (2006)) as well as the segmentation ac-
curacy SEGTok measure indicating the percentage
of input tokens assigned the correct exact segmen-
tation (as reported by Cohen and Smith (2007)).
SEGTok(noH) is the segmentation accuracy ignor-
ing mistakes involving the implicit definite article
h.11 To evaluate our performance on the tagging
task we report CPOS and FPOS corresponding
to coarse- and fine-grained PoS tagging results (F1)
measure. Evaluating parsing results in our joint
framework, as argued by Tsarfaty (2006), is not triv-
ial under the joint disambiguation task, as the hy-
pothesized yield need not coincide with the correct
one. Our parsing performance measures (SY N )
thus report the PARSEVAL extension proposed in
Tsarfaty (2006). We further report SY NCS , the
parsing metric of Cohen and Smith (2007), to fa-
cilitate the comparison. We report the F1 value of
both measures. Finally, our U (unparsed) measure
is used to report the number of sentences to which
our system could not propose a joint analysis.

7 Results and Analysis

The accuracy results for segmentation, tagging and
parsing using our different models and our standard
data split are summarized in Table 1. In addition
we report for each model its performance on gold-
segmented input (GS) to indicate the upper bound

11Overt definiteness errors may be seen as a wrong feature
rather than as wrong constituent and it is by now an accepted
standard to report accuracy with and without such errors.

for the grammars’ performance on the parsing task.
The table makes clear that enriching our grammar

improves the syntactic performance as well as mor-
phological disambiguation (segmentation and POS
tagging) accuracy. This supports our main thesis that
decisions taken by single, improved, grammar are
beneficial for both tasks. When using the segmen-
tation pruning (using HSPELL) for unseen tokens,
performance improves for all tasks as well. Yet we
note that the better grammars without pruning out-
perform the poorer grammars using this technique,
indicating that the syntactic context aids, to some
extent, the disambiguation of unknown tokens.

Table 2 compares the performance of our system
on the setup of Cohen and Smith (2007) to the best
results reported by them for the same tasks.

Model SEGTok CPOS FPOS SY NCS

GTnohsp/pln 89.50 81.00 77.65 62.22
GTnohsp/···+nph 89.58 81.26 77.82 64.30
CSpln 91.10 80.40 75.60 64.00
CSv=2 90.90 80.50 75.40 64.40
GThsp/pln 93.13 83.12 79.12 64.46
GTnohsp/···+v=2 89.66 82.85 78.92 66.31
Oracle CSpln 91.80 83.20 79.10 66.50
Oracle CSv=2 91.70 83.00 78.70 67.40
GThsp/···+v=2 93.38 85.08 80.11 69.11

Table 2: Segmentation, Parsing and Tagging Results us-
ing the Setup of (Cohen and Smith, 2007) (sentence
length ≤ 40). The Models’ are Ordered by Performance.

We first note that the accuracy results of our
system are overall higher on their setup, on all
measures, indicating that theirs may be an easier
dataset. Secondly, for all our models we provide
better fine- and coarse-grained POS-tagging accu-
racy, and all pruned models outperform the Ora-
cle results reported by them.12 In terms of syn-
tactic disambiguation, even the simplest grammar
pruned with HSPELL outperforms their non-Oracle
results. Without HSPELL-pruning, our simpler
grammars are somewhat lagging behind, but as the
grammars improve the gap is bridged. The addi-
tion of vertical markovization enables non-pruned
models to outperform all previously reported re-

12Cohen and Smith (2007) make use of a parameter (α)
which is tuned separately for each of the tasks. This essentially
means that their model does not result in a true joint inference,
as executions for different tasks involve tuning a parameter sep-
arately. In our model there are no such hyper-parameters, and
the performance is the result of truly joint disambiguation.



Model U SEGTok / no H SEGF CPOS FPOS SY N / SY NCS GS SY N

GTnohsp/pln 7 89.77 / 93.18 91.80 80.36 76.77 60.41 / 61.66 65.00
···+vpi 7 89.80 / 93.18 91.84 80.37 76.74 61.16 / 62.41 66.70
···+ppp 7 89.79 / 93.20 91.86 80.43 76.79 61.47 / 62.86 67.22
···+nph 7 89.78 / 93.20 91.86 80.43 76.87 61.85 / 63.06 68.23
···+v=2 9 89.12 / 92.45 91.77 82.02 77.86 64.53 / 66.02 70.82
GThsp/pln 11 92.00 / 94.81 94.52 82.35 78.11 62.10 / 64.17 65.00
···+vpi 11 92.03 / 94.82 94.58 82.39 78.23 63.00 / 65.06 66.70
···+ppp 11 92.02 / 94.85 94.58 82.48 78.33 63.26 / 65.42 67.22
···+nph 11 92.14 / 94.91 94.73 82.58 78.47 63.98 / 65.98 68.23
···+v=2 13 91.42 / 94.10 94.67 84.23 79.25 66.60 / 68.79 70.82

Table 1: Segmentation, tagging and parsing results on the Standard dev/train Split, for all Sentences

sults. Furthermore, the combination of pruning and
vertical markovization of the grammar outperforms
the Oracle results reported by Cohen and Smith.
This essentially means that a better grammar tunes
the joint model for optimized syntactic disambigua-
tion at least in as much as their hyper parameters
do. An interesting observation is that while vertical
markovization benefits all our models, its effect is
less evident in Cohen and Smith.

On the surface, our model may seem as a special
case of Cohen and Smith in which α = 0. How-
ever, there is a crucial difference: the morphological
probabilities in their model come from discrimina-
tive models based on linear context. Many morpho-
logical decisions are based on long distance depen-
dencies, and when the global syntactic evidence dis-
agrees with evidence based on local linear context,
the two models compete with one another, despite
the fact that the PCFG takes also local context into
account. In addition, as the CRF and PCFG look at
similar sorts of information from within two inher-
ently different models, they are far from independent
and optimizing their product is meaningless. Cohen
and Smith approach this by introducing the α hy-
perparameter, which performs best when optimized
independently for each sentence (cf. Oracle results).

In contrast, our morphological probabilities are
based on a unigram, lexeme-based model, and all
other (local and non-local) contextual considerations
are delegated to the PCFG. This fully generative
model caters for real interaction between the syn-
tactic and morphological levels as a part of a single
coherent process.

8 Discussion and Conclusion
Employing a PCFG-based generative framework to
make both syntactic and morphological disambigua-
tion decisions is not only theoretically clean and

linguistically justified and but also probabilistically
apropriate and empirically sound. The overall per-
formance of our joint framework demonstrates that
a probability distribution obtained over mere syn-
tactic contexts using a Treebank grammar and a
data-driven lexicon outperforms upper bounds pro-
posed by previous joint disambiguation systems and
achieves segmentation and parsing results on a par
with state-of-the-art standalone applications results.

Better grammars are shown here to improve per-
formance on both morphological and syntactic tasks,
providing support for the advantage of a joint frame-
work over pipelined or factorized ones. We conjec-
ture that this trend may continue by incorporating
additional information, e.g., three-dimensional mod-
els as proposed by Tsarfaty and Sima’an (2007). In
the current work morphological analyses and lexi-
cal probabilities are derived from a small Treebank,
which is by no means the best way to go. Using
a wide-coverage morphological analyzer based on
(Itai et al., 2006) should cater for a better cover-
age, and incorporating lexical probabilities learned
from a big (unannotated) corpus (cf. (Levinger et
al., 1995; Goldberg et al., ; Adler et al., 2008)) will
make the parser more robust and suitable for use in
more realistic scenarios.

Acknowledgments We thank Meni Adler and
Michael Elhadad (BGU) for helpful comments and
discussion. We further thank Khalil Simaan (ILLC-
UvA) for his careful advise concerning the formal
details of the proposal. The work of the first au-
thor was supported by the Lynn and William Frankel
Center for Computer Sciences. The work of the sec-
ond author as well as collaboration visits to Israel
was financed by NWO, grant number 017.001.271.



References

Meni Adler and Michael Elhadad. 2006. An Unsuper-
vised Morpheme-Based HMM for Hebrew Morpho-
logical Disambiguation. In Proceeding of COLING-
ACL-06, Sydney, Australia.

Meni Adler, Yoav Goldberg, David Gabay, and Michael
Elhadad. 2008. Unsupervised Lexicon-Based Reso-
lution of Unknown Words for Full Morpholological
Analysis. In Proceedings of ACL-08.

Meni Adler. 2001. Hidden Markov Model for Hebrew
Part-of-Speech Tagging. Master’s thesis, Ben-Gurion
University of the Negev.

Meni Adler. 2007. Hebrew Morphological Disambigua-
tion: An Unsupervised Stochastic Word-based Ap-
proach. Ph.D. thesis, Ben-Gurion University of the
Negev, Beer-Sheva, Israel.

Roy Bar-Haim, Khalil Sima’an, and Yoad Winter. 2005.
Choosing an optimal architecture for segmentation and
pos- tagging of modern Hebrew. In Proceedings of
ACL-05 Workshop on Computational Approaches to
Semitic Languages.

Roy Bar-Haim, Khalil Sima’an, and Yoad Winter. 2007.
Part-of-speech tagging of Modern Hebrew text. Natu-
ral Language Engineering, 14(02):223–251.

J. Chappelier, M. Rajman, R. Aragues, and A. Rozen-
knop. 1999. Lattice Parsing for Speech Recognition.

Eugene Charniak, Glenn Carroll, John Adcock, An-
thony R. Cassandra, Yoshihiko Gotoh, Jeremy Katz,
Michael L. Littman, and John McCann. 1996. Tag-
gers for Parsers. AI, 85(1-2):45–57.

David Chiang, Mona Diab, Nizar Habash, Owen Ram-
bow, and Safiullah Shareef. 2006. Parsing Arabic Di-
alects. In Proceedings of EACL-06.

Shay B. Cohen and Noah A. Smith. 2007. Joint morpho-
logical and syntactic disambiguation. In Proceedings
of EMNLP-CoNLL-07, pages 208–217.

Lewis Glinert. 1989. The Grammar of Modern Hebrew.
Cambridge University Press.

Yoav Goldberg and Michael Elhadad. 2007. SVM Model
Tampering and Anchored Learning: A Case Study
in Hebrew NP Chunking. In Proceeding of ACL-07,
Prague, Czech Republic.

Yoav Goldberg, Meni Adler, and Michael Elhadad. EM
Can Find Pretty G]ood HMM POS-Taggers (When
Given a Good Start), booktitle = Proceedings of ACL-
08, year = 2008,.

Nizar Habash and Owen Rambow. 2005. Arabic tok-
enization, part-of-speech tagging and morphological
disambiguation in one fell swoop. In Proceeding of
ACL-05.

Felix Hageloh. 2006. Parsing Using Transforms over
Treebanks. Master’s thesis, University of Amsterdam.

Nadav Har’el and Dan Kenigsberg. 2004. HSpell - the
free Hebrew Spell Checker and Morphological Ana-
lyzer. Israeli Seminar on Computational Linguistics.

Alon Itai, Shuly Wintner, and Shlomo Yona. 2006. A
Computational Lexicon of Contemporary Hebrew. In
Proceedings of LREC-06.

Moshe Levinger, Uzi Ornan, and Alon Itai. 1995. Learn-
ing Morpholexical Probabilities from an Untagged
Corpus with an Application to Hebrew. Computa-
tional Linguistics, 21:383–404.

Helmut Schmid, 2000. LoPar: Design and Implementa-
tion. Institute for Computational Linguistics, Univer-
sity of Stuttgart.

Helmut Schmid. 2004. Efficient Parsing of Highly Am-
biguous Context-Free Grammars with Bit Vector. In
Proceedings of COLING-04.

Erel Segal. 2000. Hebrew Morphological Analyzer for
Hebrew Undotted Texts. Master’s thesis, Technion,
Haifa, Israel.

Danny Shacham and Shuly Wintner. 2007. Morpho-
logical Disambiguation of Hebrew: A Case Study in
Classifier Combination. In Proceedings of EMNLP-
CoNLL-07, pages 439–447.

Khalil Sima’an, Alon Itai, Yoad Winter, Alon Altman,
and Noa Nativ. 2001. Building a Tree-Bank for
Modern Hebrew Text. In Traitement Automatique des
Langues, volume 42.

Noah A. Smith, David A. Smith, and Roy W. Tromble.
2005. Context-based morphological disambiguation
with random fields. In Proceedings of HLT-05, pages
475–482, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Reut Tsarfaty and Yoav Goldberg. 2008. Word-Based or
Morpheme-Based? Annotation Strategies for Modern
Hebrew Clitics. In Proceedings of LREC-08.

Reut Tsarfaty and Khalil Sima’an. 2004. An Integrated
Model for Morphological and Syntactic Disambigua-
tion in Modern Hebrew. MOZAIEK detailed proposal,
NWO Mozaiek scheme.

Reut Tsarfaty and Khalil Sima’an. 2007. Three-
Dimensional Parametrization for Parsing Morphologi-
cally Rich Languages. In Proceedings of IWPT-07.

Reut Tsarfaty. 2006. Integrated Morphological and Syn-
tactic Disambiguation for Modern Hebrew. In Pro-
ceedings of ACL-SRW-06.

Shlomo Yona and Shuly Wintner. 2005. A Finite-
state Morphological Grammar of Hebrew. In Proceed-
ings of the ACL-05 Workshop on Computational Ap-
proaches to Semitic Languages.


