
Background Approaches

Word formation processes in morphologically rich 
languages deliver space-delimited words which 
introduce multiple, distinct, syntactic units into the 
syntactic parse tree.

Morphological Segmentation of space-delimited words 
to morphemes in Semitic languages is highly ambiguous 
(Adler and Elhadad 2006, Habash and Rambow 2006, Bar-Haim et al. 2007).
 
Correct disambiguation may be facilitated by syntactic 
context and long distance dependencies (Tsarfaty 2006, Cohen 

and Smith 2007).

Â˙Â‡ Á˙Ï Ï˜ ˘ ËÙ˘Ó

sentence that easy to-analyze it.ACC
A sentence that is easy to analyze

(a)
mfpj f ql lntx awtw

Â˙Â‡ Á˙Ï Ï˜˘ ËÙ˘Ó

sentence considered to-analyze it.ACC
A sentence considered to analyze it

(b)
mfpj fql lntx awtw

ÂÏ˘ Á˙ Ï Ï˜˘ ËÙÂ˘ Ó

from judge NIS for chunk he.GEN
one NIS from a judge to his chunk

(c)
m fpj fql l ntx flw

ÂÁ˙Ï Ï˜˘ ËÙ˘Ó (1)
mfpj fql lntxw
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Our best model without lexical pruning outperforms S&C 
non-oracle results.
All lexically pruned models outperform S&C  non-oracle 
results.
Our best lexically-pruned model outperforms S&C oracle 
results.
Our model doesnt require tuning of hyper-parameters.

Better grammars yield better results on all tasks (in line with 

Tsarfaty 2006).
Parsing and Segmentation, should support, rather than 
compete with, one another (cf. Cohen and Smith 2007).

Table 1: Segmentation, tagging and parsing results on the Standard 
dev/train Split, for all Sentences.

Table 2: Segmentation, Parsing and Tagging Results using the Setup 
of (Cohen and Smith, 2007) (sentence length ≤ 40). The Models are 
Ordered by Performance.

A Lattice Representation

The Input

The Lattice

We assume all lattice path are a-priori equally likely.

Our lattice is a concatenation of the different word-graphs.

Each token is mapped to a lattice representing its morphological analyses.

All segmentation possibilities are represented as lattice paths.

Each arc in the lattice corresponds to a tagged segment.

We assume a lexeme-based lexicon consisting of tagged lexemes.

A Generative Model

Unknown Tokens Handling

A probabilistic lexeme-based context-free grammar read off 
of the Modern Hebrew Treebank (Simaan et al. 2001).

The Grammar

The Problem

Lexical rules: 
pre-terminal --> a lexeme (corresponding to a lattice arc) 

Pre-Terminal Rules: 
non-terminal --> pre-terminal

we propose a single, clean generative model that 
outperforms previous models on the joint task.
We present a motivated unknown handling technique 
based on lexical and grammatical constraints.
We achieve the best realistic parsing results for Modern 
Hebrew so far (~70%).
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A sequence of surface words 
A morphological analyzer maps sentences to lattices 

Syntactic rules:
non-terminal --> a sequence of non-terminals

Three types of rules:

The Parser

We look for the most probable parse given the surface forms 
and morphological analyses.

The lattice L is determined by W,M. That is,

In our model, the most probable parse induces a specific 
morphological segmentation (cf. PoS tagging Charniak et al. 1996).

We therefore remain with a model familiar as lattice parsing 
(cf. Chappelier et al. 1999).

Unknown Tokens in Hebrew are doubly unknown: Unknown token
Unknown  lexeme

Our Data-Driven Solution
2. Lexical Constraints:1. The Treatment:

a. For Unknown tokens  |  Propose possible segmentations  
 for an unknown token by chopping off all seen prefixes.
b. For Unknown lexemes  |  Assign a tag distribution  
 learned for rare-words (#1 occurrence).

Use an external lexical 
resource (HSPELL) to prune 
lexically improper segments.

Token-internal collocations 
unseen in the training data 
are pruned away.

3. Gramattical Constraints:
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The context is modeled via the PCFG (sub)derivation resulting 
in the different lexemes.

For example, we model the probability of the event fql resulting 

in the morpheme sequence f|REL ql|JJ as:

When modelling the different lexeme probabilities, we do not
treat inter-token lexeme sequences as complex tags, and do not 
take linear context into account.

Instead, the different lexemes are generated independently 
based on their corresponding PoS tags. 

The Main Point

We tested our system with increasingly complex grammars.

We investigated the effect of lexical pruning for unknown 
tokens.

S

PC
FG

O
racle

X Y

X Y

a bc

abc

S

PC
FG

Seg+
Tag

X Y

X Y

a bc

abc

S

PC
FG

H
M

MX Y

a b caabcabc bc ab c

abc

S

X Z

S

X Y Z

SS

YX

S

PC
FG

α
C

R
F

C
R

F

α

S SSS

X Y

a b caabcabc bc ab c

X Z X Y ZYX

X Y

a b caabcabc bc ab c

abc

X Z X Y ZYX

PC
FG

abc

X Y

a b caabcabc bc ab c

X Z X Y ZYX

S S SSS

S       NP    VP

VP       Verb

m fpt       {m fpt/verb, m fpt/noun}mfpt       {mfpt, m fpt, m f pt}

Verb         fkl, Verb

P(REL      f|REL) x P( JJ    ql|JJ)

Try this at home!  Parse Arabic this way!
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