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Abstract. As of yet, there is no statistical parser for Modern Hebrew (MH). Current practice in building
parsing models is not immediately applicable to languages that exhibit strong interaction between syntax
and morphology, e.g. Modern Hebrew, Arabic and other Semitic languages. We suggest that incorporating
morphological and morphosyntactic information into the parsing model is essential for parsing Semitic lan-
guages. Using a morphological analyzer, a part-of-speech tagger, and a PCFG-based general purpose parser,
we segment and parse unseen MH sentences using a small annotated corpus. The Parseval scores obtained
are not comparable to those of, e.g., state-of-the-art models for English, due to remaining syntactic ambiguity
and limited morphological treatment. We conjecture that adequate morphological and syntactic processing
of MH should be done in a unified framework in which morphology and syntax can freely interact and share
information in both directions.

1 Introduction

The structure of Semitic languages poses clear challenges to the traditional view of Nat-
ural Language Processing, in which different processing layers1 are handled separately.
Specifically, Semitic languages demonstrate strong interaction between morphological and
syntactic processing, which limits or precludes the application of standard tools and tech-
niques for parsing Semitic languages.

The problem, in essence, is as follows. Modern Hebrew (MH), Arabic, and other Semitic
languages, have a rich morphology. Affixes that are appended to the stem of a word
carry substantial information and serve different syntactic functions. Therefore, a first
step towards utterance understanding is to extract the different constituents that exist
at the word level to allow for further processing (e.g., parsing). However, because of
the large-scale morphological ambiguity in Semitic languages already at the word level,
and due to the lack of vocalization in written texts, each word-form may have multiple
possible morphological analyses. Picking out the correct analysis is largely dependent
on contextual information, which may be carried over syntactic structures. Therefore, a
suitable treatment of morphological analysis in Semitic languages demands a treatment of
syntactic analysis and vice versa.

1I.e., phonological, morphological, syntactic, semantic and pragmatic.
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This work focuses on MH and presents a baseline architecture for parsing that incor-
porates one level of morphological processing, namely morphological segmentation. The
particular contribution of this work is to demonstrate that MH statistical parsing is feasible,
even with a relatively small set of annotated data. Yet, in the current setting, our results
fall behind those achieved for, e.g., English, which may be due to corpus size, annotation
scheme, limited morphological treatment, and flexible sentence structure. In the future we
intend to develop models that implement a closer interaction between morphological and
syntactic processing, which are better suited for capturing linguistic phenomena in Semitic
languages, and are expected to boost MH parsing accuracy.

2 Linguistic Data

2.1 Semitic Morphology

Morphological analysis of a MH word consists of, at least, the stem, prefixes, person, num-
ber and gender inflections, pronominal suffixes, and so on (Segal(2000); Bar-Haim(2005);
Sima’an et al.(2001)Sima’an, Itai, Winter, Altman, and Nativ). The different morpholog-
ical processes that take place in the formation of MH words can be roughly divided into
(i) derivational morphology, (ii) inflectional morphology and (iii) concatenation.

Verbs, nouns, and adjectives in Semitic languages are derived from (tri-)consonantal
roots plugged into templates of consonant/vowel skeletons. The lexical items in (1), for
example, are all derived from the same root, [i][l][d].2 (‘. . . ’ indicates surface forms, [c]
indicates template’s slots for root’s consonants, (c) indicates doubling of root’s consonants.)

(1)
a. ‘ild’ b. ‘iild’ c. ‘mwld’

[i]e[l]e[d] [i]i[l](l)e[d] mu[][l](l)a[d]
a child (n) deliver a child (v) innate (adj)

In addition, MH has a rich array of agreement features expressed at the word level.
Features such as gender, number and person are expressed in the word’s inflectional mor-
phology. Verbs, adjectives, determiners and even numerals have to agree on the inflectional
features with the noun they complement or modify. For example, in (2b) the suffix heh (h)
alters the noun ‘ild’ (child) and its modifier ‘gdwl’ (big) to feminine gender.

(2)
a. ild gdwl b. ildh gdwlh

child.MS big.MS child.FS big.FS
a big boy a big girl

Finally, many particles in MH, such as conjunctions, prepositions, complementizers
and relativizers, are prefixed to the word. Such particles serve syntactic functions that are
distinct from that of the stem, yet a multiplicity of them may be concatenated together
with the stem to form a single (space-delimited) word. For example, the word form in (3)
is formed from a conjunction, a relativizer, a preposition, and a definite noun phrase.

2The transliteration we use is adopted from (Sima’an et al.(2001)Sima’an, Itai, Winter, Altman, and
Nativ) and repeated in the appendix for convenience.
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Figure 1.1: Syntactic Structures of MH Phrases (‘. . . ’ mark word boundaries)
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Identifying such constituents within words is crucial for analyzing the syntactic structure
of sentences, as they reveal structural dependencies such as subordinate clauses, adjuncts,
and prepositional phrase attachment.

2.2 Syntactic Structures

Turning now to syntactic structures in MH, we first note that sentences in MH have a
relatively free word order.3 In general, MH allows for both SV and VS, and in some cir-
cumstances for SVO permutations such as VSO and others (Shlonsky(1997)). To illustrate,
figures 1.1a–1.1b show two distinct syntactic structures that express the same grammatical
relations.

Further, as a result of the concatenation process the constituents that are combined to
form phrases and sentences in MH are not words, but rather, the morphological constituents
that were concatenated together to form words. Figure 1.1c demonstrates that a MH word-
form may coincide with a single constituent, as in ‘ica’ (leave, go out), it may overlap with
an entire phrase, as in ‘h ild’ (the boy), or it may span across phrases as in ‘w m h bit’
(and from the house). Thus, it becomes clear that in order to perform syntactic analysis
(parsing) of MH sentences we must first set the sequence of morphological constituents in
place.

2.3 The Problem: Ambiguity

MH and other Semitic languages exhibit a large-scale ambiguity at the word level. This
means that there are multiple ways in which a word can be broken down into its constituent
morphemes. This is further complicated by the fact that most vocalization marks (diacrit-
ics) are omitted in MH texts. The word-form ‘fmnh’, for instance, has four readings, to

3Relative to, e.g., English.
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Segmentation: fmnh fmnh fmnh fmnh f + mnh
Vocalization: shmena shamna shimna shimna she + mana
Analysis: fat.FS grew-fat.FS lubricate.FS oil-of.FS that + counted
Meaning: fat (adj) grew fat (v) lubricate (v) her oil (n) that counted (rel)

Table 1.1: Morphological Analyses of the Word Form ‘fmnh’

a. NP
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child.FS

A
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b. NP

N
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CP
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V
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Figure 1.2: Morphological Ambiguity Resolution in Different Syntactic Contexts

which (at least) five morphological analyses can be found, as shown in table 1.1.4 Moreover,
the different morphological analyses of a word may give rise to different segmentation pos-
sibilities. In the case of the word-form ‘fmnh’ the five morphological analyses correspond
to two distinct morphological segmentation possibilities, as observed in the table.

The morphological analysis of a word-form, and in particular its morphological segmen-
tation, cannot be disambiguated without reference to context, i.e., an utterance. When
context is available, various syntactic features of surrounding forms provide useful hints
for choosing the correct analysis. Figures 1.2a–1.2b show the correct analyses of the form
‘fmnh’ in the different syntactic contexts in which they appear. Note that the correct
morphological analysis maintains agreement on gender (M/F) and number (S/P) between
the noun and the verb or the adjective. In particular, the analysis ‘that counted’ is easily
picked out for 1.2b as it is the only one maintaining agreement with the modified noun.

Therefore, we would want to conclude that syntactic processing (parsing) must precede
morphological analysis; however, this would be in apparent contradiction to our previous
conclusion. For this reason, independent morphological and syntactic mechanisms for MH
will not suffice. In what follows we describe a parsing architecture that incorporates one
level of morphological processing, namely segmentation, as a first attempt to model the
interaction between morphological and syntactic processing. We further observe that the
morphosyntactic categories that are assigned to morphological segments must coincide with
the lowest level of non-terminals in the syntactic parse tree. Therefore, we incorporate
an intermediate level of processing, part-of-speech (POS) tagging, to ensure agreement
between the morphological and the syntactic tasks.

4In fact, a statistical study on a MH corpus has shown that the average number of possible anal-
yses per word-form was 2.1, while 55% of the word-forms were morphologically ambiguous (Sima’an
et al.(2001)Sima’an, Itai, Winter, Altman, and Nativ).
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3 Formal Settings

Before describing our baseline architecture, we first develop a formal account of an in-
tegrated model for morphological and syntactic processing in a generative probabilistic
framework.

Let wm
1 be a sequence of words from a fixed vocabulary (i.e., a sequence of surface

word-forms as they occur in the text), let sn
1 be a sequence of segments of words from a

(different) vocabulary, let tn
1 be a sequence of morphosyntactic categories from a finite tag

set, and let π be a syntactic parse tree.
We define morphological segmentation as the task of identifying the sequence of mor-

phological constituents that were concatenated to form a sequence of words. Formally,
we define the task as (1.1), where seg(wm

1 ) is the set of segmentations resulting from all
possible morphological analyses of the words.

sn
1
∗ = argmax

sn

1
∈seg(wn

1
)

P (sn
1 |w

m
1 ) (1.1)

Syntactic analysis, parsing, is the task of identifying the structures of phrases and sentences.
In MH, such tree structures combine segments of words that serve different syntactic func-
tions. Formally, we define it as (1.2), where yield(π) is the ordered set of leaves of the
syntactic parse tree.

π∗ = argmax
π∈{π′:yield(π′)=sn

1
}

P (π|sn
1) (1.2)

The part-of-speech (POS) tagging task is concerned with assigning morphosyntactic cate-
gories to words. Following our theoretical exposition in section 2, it becomes clear that
in MH categories are assigned to morphological segments rather than to words. So we
define the task of POS tagging as (1.3), where analyses(sn

1 ) is the set of possible POS tags’
assignments for a sequence of morphological segments.

tn1
∗ = argmax

tn
1
∈analyses(sn

1
)

P (tn1 |s
n
1) (1.3)

The task of the integrated model for morphological and syntactic processing is to find
the most probable morphological segmentation and syntactic parse tree given a sequence
of word-forms, as in (1.4).

〈π, sn
1 〉

∗ = argmax
〈π,sn

1
〉

P (π, sn
1 |w

m
1 ) (1.4)

We can rewrite (1.4) using conditional probabilities, thus distinguishing the morphological
and syntactic tasks, yet conditioning the latter on the former.

〈π, sn
1〉

∗ = argmax
〈π,sn

1
〉

P (π|sn
1 , w

m
1 )

︸ ︷︷ ︸

parsing

P (sn
1 |w

m
1 )

︸ ︷︷ ︸

segmentation

(1.5)

In order to ensure agreement between the morphological and syntactic tasks, we in-
corporate an intermediate level of POS tagging into the model, which ensures that the
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morphosyntactic categories assigned to the morphological segments coincide with the low-
est level of non-terminals in the syntactic parse trees (cf. (Charniak et al.(1996)Charniak,
Carroll, Adcock, Cassandra, Gotoh, Katz, Littman, and McCann)). This results in (1.7).

〈π, tn1 , s
n
1 〉

∗ = argmax
〈π,tn

1
,sn

1
〉

P (π, tn1 , s
n
1 |w

m
1 ) (1.6)

= argmax
〈π,tn

1
,sn

1
〉

P (π|tn1 , s
n
1 , w

n
1 )

︸ ︷︷ ︸

parsing

P (tn1 |s
n
1 , w

n
1 )

︸ ︷︷ ︸

tagging

P (sn
1 |w

m
1 )

︸ ︷︷ ︸

segmentation

(1.7)

Finally, we employ the assumption that P (wm
1 |sn

1) ≈ 1, since morphological segments can
only be conjoined in a certain order.5 So, instead of (1.5) and (1.7) we end up with (1.8),
(1.9) respectively.

≈ argmax
〈π,sn

1
〉

P (π|sn
1)

︸ ︷︷ ︸

parsing

P (sn
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m
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(1.8)
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1
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(1.9)

4 Evaluation Metrics

The intertwined nature of morphology and syntax in MH also challenges standard pars-
ing evaluation metrics, as the proposed segmentation need not coincide with the gold
segmentation for a given sentence. Therefore, we cannot use morphemes as the basic
units for comparison. Since words are complex entities that can span across phrases, we
cannot use them for comparison either. Therefore, we redefine precision and Recall by
considering the spans of syntactic categories based on the (space-free) sequences of char-
acters they correspond to. Formally, we define syntactic constituents as 〈i, A, j〉 where
i, j mark the location of characters, we define T = {〈i, A, j〉|A spans from i to j} and
G = {〈i, A, j〉|A spans from i to j} as the test/gold parse trees respectively, and calculate
as follows.

labeled precision =
#(G ∩ T )

#T
(1.10)

labeled recall =
#(G ∩ T )

#G
(1.11)

5In MH, conjunctions, relativisers, prepositions and definite markers must be attached in front of the
stem, pronominal and inflectional affixes appear at the end of the stem, and derivational morphology
shows up inside the stem. Thus, a sequence of morphological segments can only be conjoined in a certain
order. To illustrate, although the MH form ‘hkph’ is ambiguous between three morphological analyses; (i)
‘h’+‘kph’ (the + coffee) (ii) ‘hkph’ (lap, surrounding) and (iii) ‘hkp’+‘h’ (perimeter + of-her), restoring
the surface forms that correspond to the different sequences in (i)–(iii) must result in the word-form ‘hkph’.
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5 Experimental Setup

5.1 The Baseline Architecture

Our departure point for the syntactic analysis of MH is that the basic units for pro-
cessing are not words but the morphological segments that are concatenated together to
form words. Therefore, we obtain a segment-based probabilistic grammar by training a
probabilistic context-free grammar on a segmented and annotated MH corpus (Sima’an
et al.(2001)Sima’an, Itai, Winter, Altman, and Nativ), in which segments are assigned
morphosyntactic categories and are combined to form syntactic structures. Then, we use
existing tools — i.e., a morphological analyzer (Segal(2000)), a part-of-speech tagger (Bar-
Haim(2005); Bar-Haim et al.(2005)Bar-Haim, Sima’an, and Winter), and a general purpose
parser (Schmid(2000)) — in conjunction to segment and parse unseen sentences.

The Data The data set we use is taken from the MH treebank (Sima’an et al.(2001)Sima’an,
Itai, Winter, Altman, and Nativ) which consists of 5001 sentences from the daily newspa-
per ‘ha’aretz’. We employ the syntactic categories and POS tag sets developed in (Sima’an
et al.(2001)Sima’an, Itai, Winter, Altman, and Nativ). We concentrate on segmentation
information and ignore inflectional morphology altogether as it would lead to extreme data
sparseness. The data set we use includes 3257 sentences of length greater than 1 and less
than 21. The number of segments per sentence is 60% higher than the number of words
per sentence.6 We conducted 8 experiments in which the data is split into training and
test sets that are disjoint, and apply cross-fold validation to obtain robust averages.

The Morphological Analyzer A morphological analyzer helps to recover the segmenta-
tion of words by identifying their morphological constituents together with the correspond-
ing morphosyntactic categories. Various analyses may be proposed for each word. A few
standalone morphological analyzers for MH have been developed using different techniques
and employing different tag sets ((Yona(2004)), (Adler and Gabai(2005)), (Segal(2000)),
(Bojan(2006))). In this work, we use Segal’s morphological analyzer (Segal(2000)) as it was
shown to be robust and achieved the best coverage so far (96%). Since the morphosyntactic
categories employed by the analyzer differ from the POS tags in the treebank, we use an
automatic translation of the analyzer’s output to the treebank’s annotation scheme.7

The Part-of-Speech (POS) Tagger The most comprehensive work on POS tagging
for MH to date is MorphTagger (Bar-Haim(2005)). This work uses Hidden-Markov-Models
(HMMs) for POS tagging of Semitic languages. One of the tasks of MorphTagger is to
pick out the segmentation of words to allow for correct POS tags’ assignment. Therefore,
MorphTagger uses a tri-gram model that provides short-contextual information to support
disambiguation, and picks out the most probable segmentation and POS tags in context.

6In the complete MH corpus the average number of words per sentence is 17 while the average number
of morphosyntactic segments is 26.

7We are grateful to Roy Bar-Haim for providing us with the script which he wrote (Bar-Haim(2005)).
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The Parser To keep our preliminary exploration formally and computationally simple,
we start out with a general purpose PCFG parser to which simple Maximum Likelihood
(ML) estimation methods can be applied. LoPar (Schmid(2000)) is a general purpose parser
for PCFGs which can be used for statistical viterbi-like parsing with any grammar or tag
set. Therefore, we can use it in conjunction with the segment-based treebank grammar
we obtained to parse sequences of morphological segments. Further, LoPar can parse both
tagged and untagged sequences, which allows us to explore different architectural settings.

The Models We devise and implement two baseline models that are inspired by the
formal account we developed in section 3.

In the first model, henceforth Model I, we use the morphological analyzer and Mor-
phTagger to find the most probable segmentation for a given sentence. This is done by
providing MorphTagger with multiple morphological analyses per word and letting it find
the segmentation that maximizes the sum

∑

tn
1

P (tn1 , s
n
1 |w

m
1 ) (Bar-Haim(2005), section 8.2).

Then, the parser is used to find the most probable parse tree for the selected sequence of
morphological segments. Formally, this model is an approximation of equation (1.8) (albeit
a crude one, as we perform a step-wise maximization rather than making a joint decision).8

In Model II we percolate the morphological ambiguity further, to the lowest level of
non-terminals in the syntactic parse trees (i.e., the POS tags). Here we use the morpholog-
ical analyzer and MorphTagger in conjunction to find the most probable segmentation and
POS tag assignment by maximizing the joint probability P (tn

1 , s
n
1 |w

m
1 ) (Bar-Haim(2005),

section 5.2). Then, the parser is used to find the most probable parse tree for a sequence of
segments enriched with their morphosyntactic categories. Formally, this model attempts
to approximate equation (1.9). (Note that here we couple a morphological and a mor-
phosyntactic decision, as we are looking to maximize P (sn

1 , t
n
1 |w

m
1 ) ≈ P (tn1 |s

n
1)P (sn

1 |w
m
1 )

(cf. equation 1.9). Then we constrain the space of possible syntactic trees to those that
confine with the result of the joint maximization.)9

Smoothing Because of the relatively small size of our corpus (less then 10% of the WSJ
portion of the Penn treebank), we encounter a sparse data problem in all levels of pro-
cessing. In the current architecture, smoothing the estimated probabilities is delegated
to each of the relevant subcomponents of the integrated architecture. Out of vocabulary

8The reason for choosing the step-wise architecture as our first model is twofold. Firstly, a step-wise
architecture is computationally cheaper than a joint one, but more importantly, this is perhaps the simplest
end-to-end architecture for MH parsing that one could imagine. Thus, in the lack of previous MH parsing
results, it is suitable to serve as a baseline architecture against which to compare more sophisticated
models.

9We further developed a third model, Model III, which is a more faithful approximation, yet compu-
tationally affordable, of equation (1.9). In Model III we percolate the ambiguity all the way through the
integrated architecture by means of providing the parser with the n-best sequences of tagged morphological
segments, and selecting the analysis 〈π, tn

1 , sn

1 〉 which maximizes the production P (π|tn1 , sn

1 )P (sn

1 , tn1 |w
m

1 ).
However, we have not yet obtained robust results for this model prior to the submission of this paper, and
therefore we leave Model III for future discussion.
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(OOV) words are treated by the morphological analyzer, which proposes all possible seg-
mentations assuming that the stem is a proper noun. The Tri-gram language model used
by MorphTagger is smoothed using Good-Turing discounting (the so-called ‘Katz backoff’,
see (Bar-Haim(2005), section 6.1)),10 and the parser uses a variant of absolute discounting,
in which the discounted value is redistributed according to various backoff strategies to
events with zero frequency encountered in the parsing process (Schmid(2000), section 4.4).

Evaluation We use seven measures to evaluate our integrated models. First, we present
the percentage of sentences for which the model could propose a pair of corresponding
morphological and syntactic analyses. This measure is referred to as string coverage. In
order to capture tagging and parsing accuracy we refer to our redefined Parseval measures.
We separate the evaluation of assigned morphosyntactic categories, i.e., POS tags precision
and recall, and phrase-level syntactic categories, i.e., labeled precision and recall11 (where
root nodes are discarded as usual, and empty trees are counted as zero). Finally, we report
segmentation precision and recall, in order to give an impression of the morphological
disambiguation capabilities of the integrated model.12

6 Results

Table 1.2 shows the evaluation scores for the models. Model I, in which the parser oper-
ated on segmented sequences of words, proposed compatible morphological and syntactic
analyses for 99% of the unseen sentences. However, the accuracy results are much lower
– 60.3% and 58.4% labeled precision and recall for parsing, and 82.4 and 82.6% precision
and recall for POS tagging.

In model II, the input for the parser was enriched with morphosyntactic categories that
were selected in tandem with the segmentation. This improved labeled precision and recall
in 0.5% and 2.1% respectively, and POS tagging precision and recall in 2.1%. However,
together with the improved accuracy we observe a decrease of 3% in string coverage. This
means that the capability of the model to provide compatible morphological and syntactic
analyses has dropped. Also, we observe a decrease of 3% in our segmentation results, which
is mainly due to the drop in string coverage.

10In this work we did not use the bootstrapping method for smoothing the lexical model nor the various
heuristics for improved handling of OOV words proposed in (Bar-Haim(2005)). The reason for working
with bare probabilities as estimated from the corpus is to remain faithful to the probabilities we represented
in the formal exposition.

11Covert definite article errors are counted at the POS tags level, and discounted at the phrase-level.
12Since we evaluate the models’ performance on an integrated task, sentences in which one of the sub-

components failed to propose an analysis counts as zero for all subtasks.
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String Labeled Labeled POS tags POS tags Segment. Segment.
Coverage Precision Recall Precision Recall Precision Recall

Model I 99.2% 60.3% 58.4% 82.4% 82.6% 94.4% 94.7%
Model II 96.0% 60.8% 60.5% 84.5% 84.7% 91.3% 91.6%

Table 1.2: Evaluation Metrics, Models I and II

7 Analysis

This work presents a first set of statistical parsing standardized results for MH. The high
string coverage score demonstrates that, in principle, models that incorporate morpholog-
ical information can parse unseen sentences based on segmented and annotated corpora.
Furthermore, comparison of the two models shows that coupling the morphological deci-
sion with a morphosyntactic one (currently only based on short context) improves parsing
accuracy. Yet, the scores we report show that this is still insufficient for broad-coverage
parsing with high accuracy comparable to other languages.

The reasons for the low parsing accuracy are several. First, the results were obtained
using a relatively small set of training data, and a weak (unlexicalized) parser.13 Further,
the low accuracy is partially due to the severe ambiguity of the resulting PCFG. Since
word order in MH is relatively free, CFG rules can appear in various permutations, which
in turn leads to major structural ambiguity. This indicates that bare phrase structures
are not adequate for capturing regularities in MH, especially with limited training data.
Since we included only limited amount of morphological information that hints on possible
dependencies, the parser has very limited means to recover from that.

A comparison between the models shows that while POS tags’ assignment helps to
improve parsing accuracy, it has negative effects on string coverage. The reason for that is
that a probable yet incorrect POS tag assignment constrains the parser in a way that makes
it impossible for it to recover correct syntactic structures. A POS tagger that is optimized
towards syntactic decisions based on short context may result in imperfect disambiguation,
especially for a language such as MH, in which long distance dependencies (e.g., due to
agreement) are likely to be found.

Thus, we conclude that POS tagging is perhaps insufficient for enforcing agreement
between the morphological and syntactic tasks, and propose to include larger contexts for
disambiguation. We conjecture that only more extensive information sharing between the
two levels of processing, i.e., morphological patterns and inflections on the one hand, and
syntactic dependencies on the other hand, will allow for successful syntactic and morpho-
logical disambiguation.

13This is mainly due to the size of the corpus and its annotation scheme, which lacks head-marking.

10



Alphabet aleph bet gimel dalet heh vav zayin chet tet yod khaf
Transliteration a b g d h w z x j i k
Pronounciation ’ b,v g d h v z kh t y k, kh
Alphabet lamed mem nun samech ’ayin peh tsadi kof reish shin tav
Transliteration l m n s e p c q r f t
Pronounciation l m n s ’ p,ph ts k r sh, s t

Table 1.3: Transliteration

8 Conclusion

Traditional approaches for devising parsing models and defining evaluation metrics are not
adequate for MH, as they presuppose a certain language structure and separate layers of
processing. Parsing Semitic languages requires serious morphological consideration, and
we have shown that incorporating morphological cues (most crucially segmentation) and
morphosyntactic information (currently based on short context) helps to recover parses for
MH sentences. However, the high variability of the phrase structure, severe structural am-
biguity, and relatively small amount of annotated data make it insufficient for completing
the parsing task successfully.

Different languages mark regularities in their surface structures in different ways. En-
glish encodes regularities in word order, while MH provides useful hints for grammatical
relations in its derivational and inflectional morphology. Much more work is required
to prove our thesis that exploiting such information to discriminate between syntactic
structures helps to correctly recover structural dependencies. In the future, we intend to
develop more sophisticated models, allowing for closer interaction between morphological
and syntactic processing, in order to improve parsing accuracy and facilitate morphological
disambiguation.
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9 Transliteration

Table 1.3 illustrates the transliteration scheme for the MH alphabet we adopt from (Sima’an
et al.(2001)Sima’an, Itai, Winter, Altman, and Nativ).
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